Sparse Coding-Based Failure Prediction for Prudent Operation of LED Manufacturing Equipment

نویسندگان

  • Jia-Min Ren
  • Chuang-Hua Chueh
  • H. T. Kung
چکیده

A sudden failure of a critical component in light-emitting diode (LED) manufacturing equipment would result in unscheduled downtime, leading to a possibly significant loss in productivity for the manufacturer. It is therefore important to be able to predict upcoming failures. A major obstacle to failure prediction is the limited amount of equipment lifecycle data available for training, as equipment failure is not expected to be frequent. This calls for machine learning techniques capable of making accurate failure predictions with limited training data. This paper describes such a method based on sparse coding. We demonstrate the prediction performance of the method on a real-world dataset from LED manufacturing equipment. We show that sparse coding can draw out salient features associated with failure cases, and can thus produce accurate failure predictions. We also analyze how sparse coding-based failure prediction can lead to significant efficiency improvements in equipment operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Prediction of a Flexible Manufacturing System

The present investigation presents a stochastic model for a flexible manufacturing system consisting of flexible machine, loading/unloading robot and an automated pallethandling device. We consider unreliable flexible manufacturing cell (FMC) wherein machine and robot operate under individual as well as common cause random failures. The pallethandling system is completely reliable. The pallet o...

متن کامل

Optimizing the preventive maintenance scheduling by genetic algorithm based on cost and reliability in National Iranian Drilling Company

The present research aims at predicting the required activities for preventive maintenance in terms of equipment optimal cost and reliability. The research sample includes all offshore drilling equipment of FATH 59 Derrick Site affiliated with National Iranian Drilling Company. Regarding the method, the research uses a field methodology and in terms of its objectives, it is classified as an app...

متن کامل

An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring

Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple con...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015